Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 38
1.
Aging (Albany NY) ; 16(7): 6588-6612, 2024 Apr 05.
Article En | MEDLINE | ID: mdl-38604156

BACKGROUND: Liver progenitor cells (LPCs) are a subpopulation of cells that contribute to liver regeneration, fibrosis and liver cancer initiation under different circumstances. RESULTS: By performing adenoviral-mediated transfection, CCK-8 analyses, F-actin staining, transwell analyses, luciferase reporter analyses and Western blotting, we observed that TGF-ß promoted cytostasis and partial epithelial-mesenchymal transition (EMT) in LPCs. In addition, we confirmed that TGF-ß activated the Smad and MAPK pathways, including the Erk, JNK and p38 MAPK signaling pathways, and revealed that TGFß-Smad signaling induced growth inhibition and partial EMT, whereas TGFß-MAPK signaling had the opposite effects on LPCs. We further found that the activity of Smad and MAPK signaling downstream of TGF-ß was mutually restricted in LPCs. Mechanistically, we found that TGF-ß activated Smad signaling through serine phosphorylation of both the C-terminal and linker regions of Smad2 and 3 in LPCs. Additionally, TGFß-MAPK signaling inhibited the phosphorylation of Smad3 but not Smad2 at the C-terminus, and it reinforced the linker phosphorylation of Smad3 at T179 and S213. We then found that overexpression of mutated Smad3 at linker phosphorylation sites intensifies TGF-ß-induced cytostasis and EMT, mimicking the effects of MAPK inhibition in LPCs, whereas mutation of Smad3 at the C-terminus caused LPCs to blunt TGF-ß-induced cytostasis and partial EMT. CONCLUSION: These results suggested that TGF-ß downstream of Smad3 and MAPK signaling were mutually antagonistic in regulating the viability and partial EMT of LPCs. This antagonism may help LPCs overcome the cytostatic effect of TGF-ß under fibrotic conditions and maintain partial EMT and progenitor phenotypes.


Epithelial-Mesenchymal Transition , Liver , MAP Kinase Signaling System , Smad3 Protein , Stem Cells , Transforming Growth Factor beta , Smad3 Protein/metabolism , Stem Cells/metabolism , Animals , Transforming Growth Factor beta/metabolism , MAP Kinase Signaling System/physiology , Liver/metabolism , Cell Survival/drug effects , Phosphorylation , Mice , Signal Transduction
2.
Cancer Gene Ther ; 31(4): 586-598, 2024 Apr.
Article En | MEDLINE | ID: mdl-38267623

Glutamate-NMDAR receptors (GRINs) have been reported to influence cancer immunogenicity; however, the relationship between GRIN alterations and the response to immune checkpoint inhibitors (ICIs) has not been determined. This study combined clinical characteristics and mutational profiles from multiple cohorts to form a discovery cohort (n = 901). The aim of this study was to investigate the correlation between the mutation status of the GRIN gene and the response to ICI therapy. Additionally, an independent ICI-treated cohort from the Memorial Sloan Kettering Cancer Center (MSKCC, N = 1513) was used for validation. Furthermore, this study explored the associations between GRIN2A mutations and intrinsic and extrinsic immunity using multiomics analysis. In the discovery cohort, patients with GRIN2A-MUTs had improved clinical outcomes, as indicated by a higher objective response rate (ORR: 36.8% vs 25.8%, P = 0.020), durable clinical benefit (DCB: 55.2% vs 38.7%, P = 0.005), prolonged progression-free survival (PFS: HR = 0.65; 95% CI 0.49 to 0.87; P = 0.003), and increased overall survival (OS: HR = 0.67; 95% CI 0.50 to 0.89; P = 0.006). Similar results were observed in the validation cohort, in which GRIN2A-MUT patients exhibited a significant improvement in overall survival (HR = 0.66; 95% CI = 0.49 to 0.88; P = 0.005; adjusted P = 0.045). Moreover, patients with GRIN2A-MUTs exhibited an increase in tumor mutational burden, high expression of costimulatory molecules, increased activity of antigen-processing machinery, and infiltration of various immune cells. Additionally, gene sets associated with cell cycle regulation and the interferon response were enriched in GRIN2A-mutated tumors. In conclusion, GRIN2A mutation is a novel biomarker associated with a favorable response to ICIs in multiple cancers.


Immune Checkpoint Inhibitors , Neoplasms , Humans , Immune Checkpoint Inhibitors/pharmacology , Immune Checkpoint Inhibitors/therapeutic use , Neoplasms/drug therapy , Neoplasms/genetics , Interferons , Mutation , Biomarkers, Tumor/genetics
3.
Gut ; 73(6): 985-999, 2024 May 10.
Article En | MEDLINE | ID: mdl-38123979

OBJECTIVE: The gain of function (GOF) CTNNB1 mutations (CTNNB1 GOF ) in hepatocellular carcinoma (HCC) cause significant immune escape and resistance to anti-PD-1. Here, we aimed to investigate the mechanism of CTNNB1 GOF HCC-mediated immune escape and raise a new therapeutic strategy to enhance anti-PD-1 efficacy in HCC. DESIGN: RNA sequencing was performed to identify the key downstream genes of CTNNB1 GOF associated with immune escape. An in vitro coculture system, murine subcutaneous or orthotopic models, spontaneously tumourigenic models in conditional gene-knock-out mice and flow cytometry were used to explore the biological function of matrix metallopeptidase 9 (MMP9) in tumour progression and immune escape. Single-cell RNA sequencing and proteomics were used to gain insight into the underlying mechanisms of MMP9. RESULTS: MMP9 was significantly upregulated in CTNNB1 GOF HCC. MMP9 suppressed infiltration and cytotoxicity of CD8+ T cells, which was critical for CTNNB1 GOF to drive the suppressive tumour immune microenvironment (TIME) and anti-PD-1 resistance. Mechanistically, CTNNB1 GOF downregulated sirtuin 2 (SIRT2), resulting in promotion of ß-catenin/lysine demethylase 4D (KDM4D) complex formation that fostered the transcriptional activation of MMP9. The secretion of MMP9 from HCC mediated slingshot protein phosphatase 1 (SSH1) shedding from CD8+ T cells, leading to the inhibition of C-X-C motif chemokine receptor 3 (CXCR3)-mediated intracellular of G protein-coupled receptors signalling. Additionally, MMP9 blockade remodelled the TIME and potentiated the sensitivity of anti-PD-1 therapy in HCC. CONCLUSIONS: CTNNB1 GOF induces a suppressive TIME by activating secretion of MMP9. Targeting MMP9 reshapes TIME and potentiates anti-PD-1 efficacy in CTNNB1 GOF HCC.


CD8-Positive T-Lymphocytes , Carcinoma, Hepatocellular , Liver Neoplasms , Matrix Metalloproteinase 9 , beta Catenin , beta Catenin/metabolism , beta Catenin/genetics , Carcinoma, Hepatocellular/genetics , Carcinoma, Hepatocellular/immunology , Carcinoma, Hepatocellular/drug therapy , Carcinoma, Hepatocellular/pathology , Animals , Liver Neoplasms/genetics , Liver Neoplasms/immunology , Liver Neoplasms/drug therapy , Liver Neoplasms/pathology , Mice , Matrix Metalloproteinase 9/metabolism , Matrix Metalloproteinase 9/genetics , CD8-Positive T-Lymphocytes/immunology , Humans , Mutation , Programmed Cell Death 1 Receptor/metabolism , Programmed Cell Death 1 Receptor/antagonists & inhibitors , Immune Checkpoint Inhibitors/pharmacology , Immune Checkpoint Inhibitors/therapeutic use , Tumor Escape/genetics , Tumor Escape/drug effects , Tumor Microenvironment/immunology , Cell Line, Tumor
4.
Front Immunol ; 14: 1285296, 2023.
Article En | MEDLINE | ID: mdl-37928536

Background: Advanced hepatocellular carcinoma (HCC) shows poor prognosis. Combined hepatic artery infusion chemotherapy (HAIC) and lenvatinib and PD-1 antibody therapy show promising effects in treating advanced HCC, and salvage hepatectomy further promotes the overall survival in patients who were successfully converted after combined therapy. However, salvage major hepatectomy is not always amenable due to insufficient future liver remnant volume (FLV). Case presentation: We report the case of a 59-year-old man with a huge HCC as well as multiple intrahepatic foci and portal vein tumor thrombosis at his right hemi-liver. Genomic and pathologic analyses of HCC tissue revealed a TMB-high, TPS, and CPS-high cancer, with mutated DNA damage repair gene FANCC. These results suggested that this patient may benefit from chemotherapy and immunotherapy. Thus, he received combined HAIC, lenvatinib, and PD-1 antibody treatment and showed a quick and durable response. After successful downstaging, this patient was evaluated as not suitable for salvage hepatectomy due to the low FLV. He then received simultaneous transcatheter arterial chemoembolization (TACE) and portal vein embolization (PVE). The FLV increased to meet the criteria of salvage hepatectomy. Finally, this patient underwent right hemi-hepatectomy without any severe perioperative complications. In addition, no tumor recurrence occurred during the 9-month follow-up period after surgery. Conclusion: Combined HAIC, lenvatinib, and PD-1 antibody therapy, followed by simultaneous TACE and PVE, is a safe and effective conversion therapy that promotes tumor necrosis and increase FLV in patients with advanced HCC.


Carcinoma, Hepatocellular , Chemoembolization, Therapeutic , Liver Neoplasms , Venous Thrombosis , Male , Humans , Middle Aged , Carcinoma, Hepatocellular/complications , Carcinoma, Hepatocellular/therapy , Carcinoma, Hepatocellular/pathology , Liver Neoplasms/pathology , Programmed Cell Death 1 Receptor , Portal Vein/pathology , Chemoembolization, Therapeutic/methods , Combined Modality Therapy , Neoplasm Recurrence, Local/pathology , Venous Thrombosis/etiology , Venous Thrombosis/therapy , Antibodies/therapeutic use
5.
Front Immunol ; 14: 1274449, 2023.
Article En | MEDLINE | ID: mdl-37869012

Background: Combined immunotherapy has shown promising results in the treatment of advanced HCC, whereas the priority population that would respond to the combined immunotherapy is still elusive. In addition, HCC with asymptomatic hyperamylasemia was not reported previously. Case presentation: An aged patient was diagnosed as HCC with BCLC stage C (bone metastasis). Notably, this patient showed asymptomatic hyperamylasemia. The patient was then enrolled in a trial evaluating combined immunotherapy of anti-PD-1 antibody sintilimab (IBI308) plus anti-CTLA-4 antibody (IBI310) in advanced HCC. After being treated with combined immunotherapy, this patient rapidly achieved complete response (CR) according to mRECIST criteria or immune partial response (iPR) according to iRECIST criteria and maintain the CR state for more than 12 months. Interestingly, serum levels of amylase and lipase in this patient were reduced after treatment. Conclusion: We reported, for the first time, a case of metastatic HCC with asymptomatic hyperamylasemia, and suggested that HCC patients with asymptomatic hyperamylasemia may benefit from combined immunotherapy of anti-CTLA-4 and PD-1 antibodies.


Carcinoma, Hepatocellular , Hyperamylasemia , Liver Neoplasms , Humans , Aged , Antibodies, Monoclonal , Immunotherapy/methods , Abatacept , T-Lymphocytes , Cell Death
6.
Soft Robot ; 10(6): 1224-1240, 2023 Dec.
Article En | MEDLINE | ID: mdl-37590485

Data-driven methods with deep neural networks demonstrate promising results for accurate modeling in soft robots. However, deep neural network models rely on voluminous data in discovering the complex and nonlinear representations inherent in soft robots. Consequently, while it is not always possible, a substantial amount of effort is required for data acquisition, labeling, and annotation. This article introduces a data-driven learning framework based on synthetic data to circumvent the exhaustive data collection process. More specifically, we propose a novel time series generative adversarial network with a self-attention mechanism, Transformer TimeGAN (TTGAN) to precisely learn the complex dynamics of a soft robot. On top of that, the TTGAN is incorporated with a conditioning network that enables it to produce synthetic data for specific soft robot behaviors. The proposed framework is verified on a widely used pneumatic-based soft gripper as an exemplary experimental setup. Experimental results demonstrate that the TTGAN generates synthetic time series data with realistic soft robot dynamics. Critically, a combination of the synthetic and only partially available original data produces a data-driven model with estimation accuracy comparable to models obtained from using complete original data.

7.
Kidney Int ; 104(4): 769-786, 2023 10.
Article En | MEDLINE | ID: mdl-37482091

Tubulointerstitial fibrosis is considered the final convergent pathway of progressive chronic kidney diseases (CKD) regardless of etiology. However, mechanisms underlying kidney injury-induced fibrosis largely remain unknown. Recent studies have indicated that transcriptional intermediary factor 1γ (TIF1γ) inhibits the progression of fibrosis in other organs. Here, we found that TIF1γ was highly expressed in the cytoplasm and nucleus of the kidney proximal tubule. Interestingly, we found tubular TIF1γ expression was decreased in patients with CKD, including those with diabetes, hypertension, and IgA nephropathy, and in mouse models with experimental kidney fibrosis (unilateral ureteral obstruction [UUO], folic acid nephropathy [FAN], and aristolochic acid-induced nephrotoxicity). Tubule-specific knock out of TIF1γ in mice exacerbated UUO- and FAN-induced tubular cell polyploidy and subsequent fibrosis, whereas overexpression of kidney TIF1γ protected mice against kidney fibrosis. Mechanistically, in tubular epithelial cells, TIF1γ exerted an antifibrotic role via transforming growth factor-ß (TGF-ß)-dependent and -independent signaling. TIF1γ hindered TGF-ß signaling directly by inhibiting the formation and activity of the transcription factor Smad complex in tubular cells, and we discovered that TIF1γ suppressed epidermal growth factor receptor (EGFR) signaling upstream of TGF-ß signaling in tubular cells by ubiquitylating EGFR at its lysine 851/905 sites thereby promoting EGFR internalization and lysosomal degradation. Pharmacological inhibition of EGFR signaling attenuated exacerbated polyploidization and the fibrotic phenotype in mice with tubule deletion of TIF1γ. Thus, tubular TIF1γ plays an important role in kidney fibrosis by suppressing profibrotic EGFR and TGF-ß signaling. Hence, our findings suggest that maintaining homeostasis of tubular TIF1γ may be a new therapeutic option for treating tubulointerstitial fibrosis and subsequent CKD.


Renal Insufficiency, Chronic , Ureteral Obstruction , Animals , Humans , Mice , Epithelial Cells/metabolism , ErbB Receptors/genetics , Fibrosis , Kidney/metabolism , Mediation Analysis , Renal Insufficiency, Chronic/genetics , Renal Insufficiency, Chronic/metabolism , Transforming Growth Factor beta/metabolism , Transforming Growth Factor beta1/metabolism , Ureteral Obstruction/complications , Ureteral Obstruction/genetics , Ureteral Obstruction/metabolism
8.
J Control Release ; 356: 288-305, 2023 04.
Article En | MEDLINE | ID: mdl-36870542

Cancer stem cells (CSCs) have been recognized as the culprit for tumor progression, treatment resistance, metastasis, and recurrence while redox homeostasis represents the Achilles' Heel of CSCs. However, few drugs or formulations that are capable of elevating oxidative stress have achieved clinical success for eliminating CSCs. Here, we report hydroxyethyl starch stabilized copper-diethyldithiocarbamate nanoparticles (CuET@HES NPs), which conspicuously suppress CSCs not only in vitro but also in numerous tumor models in vivo. Furthermore, CuET@HES NPs effectively inhibit CSCs in fresh tumor tissues surgically excised from hepatocellular carcinoma patients. Mechanistically, we uncover that hydroxyethyl starch stabilized copper-diethyldithiocarbamate nanocrystals via copper­oxygen coordination interactions, thereby promoting copper-diethyldithiocarbamate colloidal stability, cellular uptake, intracellular reactive oxygen species production, and CSCs apoptosis. As all components are widely used in clinics, CuET@HES NPs represent promising treatments for CSCs-rich solid malignancies and hold great clinical translational potentials. This study has critical implications for design of CSCs targeting nanomedicines.


Carcinoma, Hepatocellular , Liver Neoplasms , Nanoparticles , Humans , Ditiocarb/chemistry , Ditiocarb/pharmacology , Ditiocarb/therapeutic use , Copper/chemistry , Nanoparticles/chemistry , Carcinoma, Hepatocellular/drug therapy , Carcinoma, Hepatocellular/pathology , Liver Neoplasms/drug therapy , Liver Neoplasms/pathology , Starch/chemistry , Cell Line, Tumor , Hydroxyethyl Starch Derivatives/pharmacology , Hydroxyethyl Starch Derivatives/therapeutic use , Neoplastic Stem Cells
9.
Pharmacol Res ; 190: 106740, 2023 04.
Article En | MEDLINE | ID: mdl-36958408

Cancer stem cells (CSCs) have been blamed as the main culprit of tumor initiation, progression, metastasis, chemoresistance, and recurrence. However, few anti-CSCs agents have achieved clinical success so far. Here we report a novel derivative of lonidamine (LND), namely HYL001, which selectively and potently inhibits CSCs by targeting mitochondria, with 380-fold and 340-fold lower IC50 values against breast cancer stem cells (BCSCs) and hepatocellular carcinoma stem cells (HCSCs), respectively, compared to LND. Mechanistically, we reveal that HYL001 downregulates glutaminase (GLS) expression to block glutamine metabolism, blunt tricarboxylic acid cycle, and amplify mitochondrial oxidative stress, leading to apoptotic cell death. Therefore, HYL001 displays significant antitumor activity in vivo, both as a single agent and combined with paclitaxel. Furthermore, HYL001 represses CSCs of fresh tumor tissues derived from liver cancer patients. This study provides critical implications for CSCs biology and development of potent anti-CSCs drugs.


Antineoplastic Agents , Liver Neoplasms , Humans , Antineoplastic Agents/pharmacology , Antineoplastic Agents/therapeutic use , Antineoplastic Agents/metabolism , Glutamine/metabolism , Liver Neoplasms/drug therapy , Liver Neoplasms/metabolism , Mitochondria/metabolism , Neoplastic Stem Cells , Cell Line, Tumor
10.
J Biomed Sci ; 29(1): 69, 2022 Sep 13.
Article En | MEDLINE | ID: mdl-36100865

The tripartite motif (TRIM) protein family is a highly conserved group of E3 ligases with 77 members known in the human, most of which consist of a RING-finger domain, one or two B-box domains, and a coiled-coil domain. Generally, TRIM proteins function as E3 ligases to facilitate specific proteasomal degradation of target proteins. In addition, E3 ligase independent functions of TRIM protein were also reported. In hepatocellular carcinoma, expressions of TRIM proteins are both regulated by genetic and epigenetic mechanisms. TRIM proteins regulate multiple biological activities and signaling cascades. And TRIM proteins influence hallmarks of HCC. This review systematically demonstrates the versatile roles of TRIM proteins in HCC and helps us better understand the molecular mechanism of the development and progression of HCC.


Carcinoma, Hepatocellular , Liver Neoplasms , Carcinoma, Hepatocellular/genetics , Humans , Liver Neoplasms/genetics , Proteins , Tripartite Motif Proteins/genetics , Tripartite Motif Proteins/metabolism , Ubiquitin-Protein Ligases/genetics , Ubiquitin-Protein Ligases/metabolism
11.
Soft Robot ; 9(3): 591-612, 2022 06.
Article En | MEDLINE | ID: mdl-34171965

Sensory data are critical for soft robot perception. However, integrating sensors to soft robots remains challenging due to their inherent softness. An alternative approach is indirect sensing through an estimation scheme, which uses robot dynamics and available measurements to estimate variables that would have been measured by sensors. Nevertheless, developing an adequately effective estimation scheme for soft robots is not straightforward. First, it requires a mathematical model; modeling of soft robots is analytically demanding due to their complex dynamics. Second, it should perform multimodal sensing for both internal and external variables, with minimal sensors, and finally, it must be robust against sensor faults. In this article, we propose a recurrent neural network-based adaptive unscented Kalman filter (RNN-AUKF) architecture to estimate the proprioceptive state and exteroceptive unknown input of a pneumatic-based soft finger. To address the challenge in modeling soft robots, we adopt a data-driven approach using RNNs. Then, we interconnect the AUKF with an unknown input estimator to perform multimodal sensing using a single embedded flex sensor. We also prove mathematically that the estimation error is bounded with respect to sensor degradation (noise and drift). Experimental results show that the RNN-AUKF achieves a better overall performance in terms of accuracy and robustness against the benchmark method. The proposed scheme is also extended to a multifinger soft gripper and is robust against out-of-distribution sensor dynamics. The outcomes of this research have immense potentials in realizing a robust multimodal indirect sensing in soft robots.


Robotics , Models, Theoretical , Neural Networks, Computer , Proprioception , Robotics/methods
12.
Clin Transl Med ; 11(11): e635, 2021 11.
Article En | MEDLINE | ID: mdl-34841685

BACKGROUND: Aberrant TAK1 (transforming growth factor ß-activated kinase 1) activity is known to be involved in a variety of malignancies, but the regulatory mechanisms of TAK1 remain poorly understood. GRAMD4 (glucosyltransferase Rab-like GTPase activator and myotubularin domain containing 4) is a newly discovered p53-independent proapoptotic protein with an unclear role in HCC (hepatocellular carcinoma). RESULTS: In this research, we found that GRAMD4 expression was lower in HCC samples, and its downregulation predicted worse prognosis for patients after surgical resection. Functionally, GRAMD4 inhibited HCC migration, invasion and metastasis. Mechanistically, GRAMD4 interacted with TAK1 to promote its protein degradation, thus, resulting in the inactivation of MAPK (Mitogen-activated protein kinase) and NF-κB pathways. Furthermore, GRAMD4 was proved to recruit ITCH (itchy E3 ubiquitin protein ligase) to promote the ubiquitination of TAK1. Moreover, high expression of TAK1 was correlated with low expression of GRAMD4 in HCC patients. CONCLUSIONS: GRAMD4 inhibits the migration and metastasis of HCC, mainly by recruiting ITCH to promote the degradation of TAK1, which leads to the inactivation of MAPK and NF-κB signalling pathways.


Carcinoma, Hepatocellular/drug therapy , MAP Kinase Kinase Kinases/antagonists & inhibitors , Mitochondrial Proteins/pharmacology , Neoplasm Metastasis/drug therapy , Carcinoma, Hepatocellular/physiopathology , Humans , Liver Neoplasms/drug therapy , Liver Neoplasms/physiopathology , MAP Kinase Kinase Kinases/therapeutic use , Mitochondrial Proteins/therapeutic use , Neoplasm Metastasis/prevention & control , Repressor Proteins/pharmacology , Repressor Proteins/therapeutic use , Signal Transduction/drug effects , Signal Transduction/physiology , Ubiquitin-Protein Ligases/pharmacology , Ubiquitin-Protein Ligases/therapeutic use
13.
Adv Sci (Weinh) ; 8(15): e2100233, 2021 08.
Article En | MEDLINE | ID: mdl-34085419

Aberrant mechanical properties and immunosuppression are the two key factors that limit the antitumor efficacy of T cell immune checkpoint blockade inhibitors, e.g., programmed cell death-1 antibody (PD-1 Ab), against solid tumors in the clinic. This study leverages hyperbaric oxygen (HBO) for the first time to address these two issues and reports the PD-1-Ab-mediated immune responses against various stroma-rich solid malignancies. The results demonstrate that HBO promoted PD-1 Ab delivery and T cells infiltration into tumor parenchyma by depleting the extracellular matrix's main components, such as collagen and fibronectin. Furthermore, HBO disrupts hypoxia-mediated immunosuppression and helps PD-1 Ab trigger robust cytotoxic T lymphocytes and long-lasting immunological memory to inhibit tumor relapses. Such enhanced immune responses are effective in solid tumors from rodents and the cancer cells from hepatocellular carcinoma patients. The results illustrate that HBO bolsters antitumor efficacy of PD-1 Ab, and the HBO-PD-1 Ab combination is a promising stroma-rich solid tumors' treatment in the clinic.


Hyperbaric Oxygenation/methods , Immunity/immunology , Liver Neoplasms/immunology , Liver Neoplasms/therapy , Programmed Cell Death 1 Receptor/immunology , T-Lymphocytes/immunology , Animals , Cell Line, Tumor , Disease Models, Animal , Mice , Mice, Inbred BALB C
15.
Int J Med Sci ; 18(11): 2366-2371, 2021.
Article En | MEDLINE | ID: mdl-33967613

Coronavirus Disease 2019 (COVID-19) emerges as a global pandemic and there is a lack of evidence about the clinical course and outcome of patients on maintenance hemodialysis (MHD). Here we conducted a retrospective longitudinal study aimed to analyze the clinical features and outcome of MHD patients hospitalized with COVID-19. Of 3126 inpatients with COVID-19 at 3 Branches of Wuhan Tongji Hospital from Jan 18th to Mar 9th, 2020, 19 patients were undergoing maintenance hemodialysis. Among the 19 MHD patients with COVID-19, 6 patients (31.6%) died, and 13 patients (68.4%) were able to be discharged. Baseline characteristics, clinical courses, laboratory findings, and dynamic trajectories of major laboratory markers were compared between survivors and nonsurvivors. According to our findings, MHD patients with COVID-19 who experienced non-surviving outcome had more elevated CRP, IL6 and procalcitonin as well as fibrinogen levels at various points compared to survivors. Thus the dysregulation of immune response as well as coagulation abnormalities might be highly involved in the pathological process of COVID-19, contributing to the poor prognosis in MHD patients.


COVID-19/etiology , Kidney Failure, Chronic/complications , Renal Dialysis , SARS-CoV-2 , Adult , Aged , Aged, 80 and over , C-Reactive Protein/analysis , COVID-19/immunology , Female , Hospitalization , Humans , Longitudinal Studies , Male , Middle Aged , Retrospective Studies , COVID-19 Drug Treatment
16.
Theranostics ; 11(3): 1345-1363, 2021.
Article En | MEDLINE | ID: mdl-33391538

During the past decades, drugs targeting transforming growth factor-ß (TGFß) signaling have received tremendous attention for late-stage cancer treatment since TGFß signaling has been recognized as a prime driver for tumor progression and metastasis. Nonetheless, in healthy and pre-malignant tissues, TGFß functions as a potent tumor suppressor. Furthermore, TGFß signaling plays a key role in normal development and homeostasis by regulating cell proliferation, differentiation, migration, apoptosis, and immune evasion, and by suppressing tumor-associated inflammation. Therefore, targeting TGFß signaling for cancer therapy is challenging. Recently, we and others showed that blocking TGFß signaling increased chemotherapy efficacy, particularly for nanomedicines. In this review, we briefly introduce the TGFß signaling pathway, and the multifaceted functions of TGFß signaling in cancer, including regulating the tumor microenvironment (TME) and the behavior of cancer cells. We also summarize TGFß targeting agents. Then, we highlight TGFß inhibition strategies to restore the extracellular matrix (ECM), regulate the tumor vasculature, reverse epithelial-mesenchymal transition (EMT), and impair the stemness of cancer stem-like cells (CSCs) to enhance cancer chemotherapy efficacy. Finally, the current challenges and future opportunities in targeting TGFß signaling for cancer therapy are discussed.


Antineoplastic Agents/pharmacology , Antineoplastic Agents/therapeutic use , Neoplasms/drug therapy , Neoplasms/metabolism , Signal Transduction/drug effects , Transforming Growth Factor beta/metabolism , Animals , Apoptosis/drug effects , Cell Movement/drug effects , Epithelial-Mesenchymal Transition/drug effects , Extracellular Matrix/drug effects , Humans , Tumor Microenvironment/drug effects
17.
J Hepatol ; 74(6): 1295-1302, 2021 06.
Article En | MEDLINE | ID: mdl-33347952

BACKGROUND & AIMS: The evolution and clinical significance of abnormal liver chemistries and the impact of hepatitis B infection on outcome in patients with COVID-19 is not well characterized. This study aimed to explore these issues. METHODS: This large retrospective cohort study included 2,073 patients with coronavirus disease 2019 (COVID-19) and definite outcomes in Wuhan, China. Longitudinal liver function tests were conducted, with associated factors and risk of death determined by multivariate regression analyses. A prognostic nomogram was formulated to predict the survival of patients with COVID-19. The characteristics of liver abnormalities and outcomes of patients with COVID-19, with and without hepatitis B, were compared after 1:3 propensity score matching. RESULTS: Of the 2,073 patients, 1,282 (61.8%) had abnormal liver chemistries during hospitalization, and 297 (14.3%) had a liver injury. The mean levels of aspartate aminotransferase (AST) and direct bilirubin (D-Bil) increased early after symptom onset in deceased patients and showed disparity compared to levels in discharged patients throughout the clinical course of the disease. Abnormal AST (adjusted hazard ratio [HR] 1.39; 95% CI 1.04-1.86, p = 0.027) and D-Bil (adjusted HR 1.66; 95% CI 1.22-2.26; p = 0.001) levels at admission were independent risk factors for mortality due to COVID-19. A nomogram was established based on the results of multivariate analysis and showed sufficient discriminatory power and good consistency between the prediction and the observation. HBV infection in patients did not increase the risk of poor COVID-19-associated outcomes. CONCLUSIONS: Abnormal AST and D-Bil levels at admission were independent predictors of COVID-19-related mortality. Therefore, monitoring liver chemistries, especially AST and D-Bil levels, is necessary in hospitalized patients with COVID-19. LAY SUMMARY: Liver test abnormalities (in particular elevations in the levels of aspartate aminotransferase [AST] and direct bilirubin [D-Bil]) were observed after symptom onset in patients who went on to die of coronavirus disease 2019 (COVID-19). Abnormal levels of AST and D-Bil at admission were independent predictors of COVID-19-related mortality. HBV infection in patients did not increase the risk of poor COVID-19-associated outcomes.


Aspartate Aminotransferases/blood , Bilirubin/blood , COVID-19/mortality , Hospital Mortality , Liver Diseases/complications , SARS-CoV-2 , Aged , Female , Hepatitis B/complications , Humans , Male , Middle Aged , Propensity Score , Retrospective Studies
18.
Medicine (Baltimore) ; 98(45): e17832, 2019 Nov.
Article En | MEDLINE | ID: mdl-31702638

INTRODUCTION: The prognosis for recurrent intrahepatic cholangiocarcinoma with bone metastasis remains dismal and its treatment poses a challenge for oncologists. To date, only 2 cases were reported in which pembrolizumab, an agent against programmed cell death protein-1 (PD-1), combined with chemotherapy led to a complete response. The safety and efficacy of nivolumab-based immunotherapy combined with lenvatinibin intrahepatic cholangiocarcinoma is unknown. PATIENT CONCERNS: A 40-year-old female was identified as having a lesion of 7.0 cm in diameter in the right lobe of the liver. In addition, calculi in the main and left hepatic bile ducts as well as the gallbladder were found. DIAGNOSIS: Based on the results of imaging studies and tumor biomarker level, the patient was initially diagnosed as having intrahepatic cholangiocellular carcinoma and cholelithiasis, after which surgery was performed. The pathological examination confirmed that the tumor was cholangiocarcinoma. Adjuvant chemotherapy was administered after surgery. However, the patient developed recurrent lesions at the 5th month after surgery, and the cholangiocarcinoma expanded to the right thoracic vertebral pedicle (T7-8) at the 6th month. INTERVENTIONS: The patient underwent percutaneous microwave ablation after recurrence in the liver was identified. After that, the patient received nivolumab plus lenvatinib. OUTCOMES: The lesions in the liver decreased in size and disappeared after treatment with nivolumab plus lenvatinib. Additionally, the metastases in the right thoracic vertebral pedicle were stable after 9 months of therapy. LESSONS: Immunotherapy has revolutionized the treatment of non-small-cell lung cancer, melanoma, and advanced renal cell carcinoma. In this case, the patient achieved an excellent radiological and symptomatic response after receiving nivolumab plus lenvatinib combination therapy. Patients suffering from cholangiocarcinoma with dMMR status and a high tumor mutation burden (TMB) may have a consistent eutherapeutic effect with anti-PD-1-directed treatment.


Bile Duct Neoplasms/drug therapy , Bile Ducts, Intrahepatic/pathology , Bone Neoplasms/drug therapy , Bone Neoplasms/secondary , Cholangiocarcinoma/drug therapy , Adult , Antibodies, Monoclonal, Humanized/therapeutic use , Antineoplastic Combined Chemotherapy Protocols/therapeutic use , Bile Duct Neoplasms/surgery , Bile Ducts, Intrahepatic/surgery , Cholangiocarcinoma/surgery , Female , Humans , Neoplasm Recurrence, Local , Phenylurea Compounds/therapeutic use , Quinolines/therapeutic use , Radiofrequency Ablation , Survival Analysis , Treatment Outcome
19.
J Gastrointest Surg ; 23(9): 1778-1787, 2019 09.
Article En | MEDLINE | ID: mdl-30406576

BACKGROUND: The objective of this study was to evaluate the learning curve effect on the safety and feasibility of robot-assisted liver resection (RALR). METHODS: In 140 consecutive cases, all data about demographic, surgical procedure, postoperative course were collected prospectively and analyzed. Risk-adjusted cumulative sum model was used for determining the learning curve based on the need for conversion. RESULTS: Among all 140 patients, no patients suffered from any organ dysfunction postoperatively and the operative mortality was 0%. The CUSUM analysis showed that at the 30th consecutive patient, the open conversion rate reached to the average value, and it further improved thereafter. In the last 70 patients, only 3 patients (4.3%) required conversion and 7 patients (10%) needed blood transfusion. Only 1 patient (1.3%) out of 79 patients with HCC had a positive resection margin. Univariate analyses showed the following risk factors associated with significantly higher risks of conversion (P < 0.05): tumor number > 1, lesions in segments 1/4a/7/8, right posterior sectionectomy, and lesions which were beyond the indications of the Louisville statement. Multivariate logistic analysis revealed that both tumor number > 1 (OR: 2.10, P < 0.05) and right posterior sectionectomy (OR: 11.19, P < 0.01) were risk factors of conversion. CONCLUSIONS: The robotic approach for hepatectomy is safe and feasible. A learning curve effect was demonstrated in this study after the 30th consecutive patient. The long-term oncological outcomes of robotic hepatectomy still need further investigation.


Carcinoma, Hepatocellular/surgery , Hepatectomy/education , Laparoscopy/education , Learning Curve , Liver Neoplasms/surgery , Robotics/education , Adolescent , Adult , Aged , Child , Child, Preschool , Feasibility Studies , Female , Hepatectomy/methods , Humans , Laparoscopy/methods , Male , Middle Aged , Operative Time , Postoperative Period , Young Adult
20.
J Cell Physiol ; 234(7): 11942-11950, 2019 07.
Article En | MEDLINE | ID: mdl-30536816

DNA methylation is a crucial regulator of gene transcription in the etiology and pathogenesis of hepatocellular carcinoma (HCC). Thus, it is reasonable to identify DNA methylation-related prognostic markers. Currently, we aimed to make an integrative epigenetic analysis of HCC to identify the effectiveness of epigenetic drivers in predicting prognosis for HCC patients. By the software pipeline TCGA-Assembler 2, RNA-seq, and methylation data were downloaded and processed from The Cancer Genome Atlas. A bioconductor package MethylMix was utilized to incorporate gene expression and methylation data on all 363 samples and identify 589 epigenetic drivers with transcriptionally predictive. By univariate survival analysis, 72 epigenetic drivers correlated with overall survival (OS) were selected for further analysis in our training cohort. By the robust likelihood-based survival model, six epi-drivers (doublecortin domain containing 2, flavin containing monooxygenase 3, G protein-coupled receptor 171, Lck interacting transmembrane adaptor 1, S100 calcium binding protein P, small nucleolar RNA host gene 6) serving as prognostic markers was identified and then a DNA methylation signature for HCC (MSH) predicting OS was identified to stratify patients into low-risk and high-risk groups in the training cohort (p < 0.001). The capability of MSH was also assessed in the validation cohort (p = 0.002). Furthermore, a receiver operating characteristic curve confirmed MSH as an effective prognostic model for predicting OS in HCC patients in training area under curve (AUC = 0.802) and validation (AUC = 0.691) cohorts. Finally, a nomogram comprising MSH and pathologic stage was generated to predict OS in the training cohort, and it also operated effectively in the validation cohort (concordance index: 0.674). In conclusion, MSH, a six epi-drivers based signature, is a potential model to predict prognosis for HCC patients.


Carcinoma, Hepatocellular/genetics , DNA Methylation/physiology , Gene Expression Regulation, Neoplastic/genetics , Liver Neoplasms/genetics , Biomarkers, Tumor/genetics , Carcinoma, Hepatocellular/metabolism , Epigenomics/methods , Female , Gene Expression Profiling/methods , Humans , Liver Neoplasms/diagnosis , Liver Neoplasms/pathology , Male , Middle Aged , Prognosis , ROC Curve
...